Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Biology (Basel) ; 10(12)2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1591730

ABSTRACT

Human adenovirus (HAdV) infections cause a wide variety of clinical symptoms, ranging from mild upper respiratory tract disease to lethal outcomes, particularly in immunocompromised individuals. To date, neither widely available vaccines nor approved antiadenoviral compounds are available to efficiently deal with HAdV infections. Thus, there is a need to thoroughly understand HAdV-induced disease, and for the development and preclinical evaluation of HAdV therapeutics and/or vaccines, and consequently for suitable standardizable in vitro systems and animal models. Current animal models to study HAdV pathogenesis, persistence, and tumorigenesis include rodents such as Syrian hamsters, mice, and cotton rats, as well as rabbits. In addition, a few recent studies on other species, such as pigs and tree shrews, reported promising data. These models mimic (aspects of) HAdV-induced pathological changes in humans and, although they are relevant, an ideal HAdV animal model has yet to be developed. This review summarizes the available animal models of HAdV infection with comprehensive descriptions of virus-induced pathogenesis in different animal species. We also elaborate on rodent HAdV animal models and how they contributed to insights into adenovirus-induced cell transformation and cancer.

2.
Zool Res ; 41(5): 517-526, 2020 Sep 18.
Article in English | MEDLINE | ID: covidwho-671953

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic continues to pose a global threat to the human population. Identifying animal species susceptible to infection with the SARS-CoV-2/ HCoV-19 pathogen is essential for controlling the outbreak and for testing valid prophylactics or therapeutics based on animal model studies. Here, different aged Chinese tree shrews (adult group, 1 year old; old group, 5-6 years old), which are close relatives to primates, were infected with SARS-CoV-2. X-ray, viral shedding, laboratory, and histological analyses were performed on different days post-inoculation (dpi). Results showed that Chinese tree shrews could be infected by SARS-CoV-2. Lung infiltrates were visible in X-ray radiographs in most infected animals. Viral RNA was consistently detected in lung tissues from infected animals at 3, 5, and 7 dpi, along with alterations in related parameters from routine blood tests and serum biochemistry, including increased levels of aspartate aminotransferase (AST) and blood urea nitrogen (BUN). Histological analysis of lung tissues from animals at 3 dpi (adult group) and 7 dpi (old group) showed thickened alveolar septa and interstitial hemorrhage. Several differences were found between the two different aged groups in regard to viral shedding peak. Our results indicate that Chinese tree shrews have the potential to be used as animal models for SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/growth & development , Coronavirus Infections/diagnosis , Disease Models, Animal , Lung/pathology , Pneumonia, Viral/diagnosis , Tupaiidae/physiology , Age Factors , Animals , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Humans , Lung/virology , Male , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Tupaiidae/virology , Virus Shedding/physiology
SELECTION OF CITATIONS
SEARCH DETAIL